		Library GPY
660131	BP	oll No.: Total Printed Pages : 4 1E1023 Tech. (Sem. I) (Main/Back) Examination, January/February - 2011 hysics - I Common to all Branches of Engg.)
Tim	e: 3 ⊦	lours] [Total Marks : 80 [Min. Passing Marks : 24
	Atte	mpt overall five questions selecting one question from each unit. All questions carry equal marks.
		owing supporting material is permitted during examination. d in form No. 205)
1		Scientific Calculator (Non-Programmable) 2. Nil
		UNIT - I
1	(i)	Explain the working of Michelson's interferometer. How it is used to measure the difference in the wavelength between the D lines of sodium light?
	(ii)	Michelson interferometer experiment is performed with a source which have two wavelengths $4882 \stackrel{\circ}{A}$ and $4886 \stackrel{\circ}{A}$. By what distance does the mirror have to be moved between positions of disappearance of fringes?
	/:::X	With the standard Late Control Cla
	(iii)	Write short note on Interference filters.
		OR
•	· · ·	

Explain the formation of Newton's rings in reflected light.
Why Newton's rings are circular in shape, Explain.

6

1E1023] | [Contd...

(ii) Light containing two wavelengths λ_1 and λ_2 falls normally on a plano convex lens of radius of curvature R resting on a glass plate. If the nth dark ring due to λ_1 , coincides with the (n+1)th dark ring due to λ_2 , prove that the radius of the

 $n^{th} \ dark \ ring \ of \ \lambda_1 \ is \ \sqrt{\frac{\lambda_1 \lambda_2 \, \mathit{R}}{\lambda_1 - \lambda_2}} \, .$

6

(iii) Write short note on Anti-reflection coating.

1

UNIT - II

2 (i) Show that plane polarised and circularly polarised light are the special cases of elliptically polarised light.

8

(ii) Intensity of light through a polariser and analyser is maximum when their principal planes are parallel. Through what angle the analyzer must be rotated so that the intensity gets reduced to 1/4 of the maximum value.

4

(iii) What is Malus Law?

4

OR

2 (i) Describe the construction and working of Laurent's half shade polarimeter.

6

(ii) What are quarter wave and half wave plates? - Explain.

6

(iii) 80 gm of impure sugar when dissolved in a litre of water, gives an optical rotation of 9.9°, when placed in a tube of length 200 mm. If the specific rotation of sugar is 66 degree/dm / (gm/cc), find the percentage purity of sugar sample.

4

UNIT - III

Find out an expression for intensity at a point in the 3 Fraunhofer diffraction due to a single slit. Draw the intensity distribution curve.

(ii)The width of a slit is 0.012 mm. Monochromatic light is incident on it. The angular position of first bright line is 5.2°. Calculate the wavelength of incident light.

What is difference in Fresnel's and Fraunhofer diffraction?

OR

3 Show that the intensity of light diffracted from a plane (i) transmission grating is given by

$$I = I_o \left(\frac{\sin \alpha}{\alpha}\right)^2 \left(\frac{\sin N\beta}{\sin \beta}\right)^2.$$

Where symbols have their usual meaning.

A diffraction grating just resolves lines 4547.27 $\overset{\circ}{A}$ and 4547.98 $\overset{\circ}{A}$ in third order. Will it resolve lines 6437.48 $\overset{\circ}{A}$ and $6437.95 \stackrel{\circ}{A}$ in the first order?

(iii) Explain Rayleigh criterion of resolution.

4

UNIT - IV

Obtain an expression for shift in wavelength of the scattered 4 (i) photon by Compton scattering.

In compton experiment the wavelength of x-ray radiation scattered at an angle of 45° is 0.022 $\overset{\circ}{A}$. Calculate the wavelength of the incident x-rays.

4

(iii) Give physical interpretation of wave function.

OR

1E1023]

3

[Contd...

4 (i) Write down Schrodinger's equation for a particle confined in a one dimensional box. Obtain the wave function for a particle confined in this box.

8

(ii) A particle is moving in one-dimensional potential box (of infinite height) of width 25 \mathring{A} . Calculate the probability of finding the particle within an interval of 5 \mathring{A} at the centres of the box when it is in its state ot least energy.

4

(iii) Explain normalized and orthogonal wave functions.

4

UNIT - V

5 (i) State the postulates of special theory of relativity and deduce from them the Lorentz Transformations.

8

(ii) Rocket 'A' travels towards the right and rocket 'B' travels to the left, with velocities 0.8 c and 0.6 c, respectively relative to the earth. What is the velocity of rocket 'A' measured from rocket 'B'?

4

(iii) Describe experiment verification of time dilation.

4

OR

5 (i) Derive Einstein's mass energy relation and explain its importance.

6

(ii) Prove that particle having rest mass zero is always move with velocity of light.

6

(iii) If P and E represent the momentum and energy of a particle, then show that, under Lorentz Transformations, $\left(P^2 - \frac{E^2}{c^2}\right)$ is an invariant.

1